Jump to content

Garage Vehicles

Disney Pics 003.jpg

Jeep Wrangler (1992)

Owner: Megatron

Added: 27 September 2013 - 08:56 AM


Dodge Ram 3500 (2006)

Owner: Megatron

Added: 25 September 2013 - 07:37 AM

6-inch XJ suspension lift (Lead).jpg

Jeep XJ Cherokee 4WD Sport 4-door (1999)

Owner: Moses Ludel

Added: 15 September 2013 - 01:16 PM


Dodge Dakota (1988)

Owner: biggman100

Added: 22 September 2013 - 05:22 PM

Forum Photos (2).jpg

Dodge Ram 3500 Cummins Quad-Cab 4x4 S...

Owner: Moses Ludel

Added: 15 September 2013 - 08:42 AM

Most Liked Content

#41 New Jeep CJ-8 Owner-Member!

Posted by RareCJ8 on 09 April 2013 - 09:46 PM

Name is Mark, and I live at Reno.  Wheeling since 1976, like 4x4s, ATVs, dirt bikes and my beloved, and sometimes hated, 1981 CJ8 Scrambler.  Interested in all things Jeep!



  • Moses Ludel and Rollbar like this

#343 Importance of Caster Angle and Other Front End Questions

Posted by Moses Ludel on 27 July 2013 - 01:16 PM

All good points, Megatron, each deserves an explanation, so here we go...I'll begin by sharing that I ran a four-wheel alignment rack at a GMC truck dealership in the mid-'80s, the era of both beam front axle 4x4s and IFS 2WD and 4WD front ends.  For fifteen years prior to that, I had been doing alignment with far less equipment than that new Hunter four-wheel, electronic light beam rack.  Fifteen years after the dealership stint, I taught wheel alignment at the adult vocational training level and merged my varied equipment experiences, which reflect in what I'm now sharing.

It's great to use precision four-wheel alignment equipment.  However, "computer" alignment equipment is also limited in many ways.  For example, you describe aftermarket wheels, suspension and tires, and you're right, of the three (assuming the suspension kit is as adjustable as yours), the wheel offset is the most critical modification.  Because your truck falls outside the OEM guidelines built into the software for modern alignment equipment, many shops will avoid doing your truck's alignment.
Reasons for refusal include "liability", "unpredictable results" and "possibility of abnormal tire wear"—regardless of the alignment procedure.  In many cases, the shop simply doesn't know what they can do to address or compensate for your modifications...After all, this is the era of plug-and-play.  Follow the flow charts or stare at the computer screen or scanner.  Wait long enough, and maybe an answer will materialize...That's not going to happen here!
For now, let's suspend judgment about why your truck and millions of other 4x4s are in this predicament.  You've installed all of this hardware, and it's time to make the vehicle track as safely as possible—and for the tires to last.
As for front axle lateral alignment, your adjustable track bar is a real asset.  Alignment does reference from the rear axle, and for good reason.  The term "thrust" is just what it sounds like: The rear axle on a RWD vehicle is the traction point, pushing the frame and the entire vehicle forward from the rear.  Unless you're driving backward, your rear-drive truck requires the front axle to align squarely under thrust.  (Thus the term "thrust alignment"!)  The axles must be square, in any case.
To illustrate, draw a line forward and perpendicular to the centerline of the rear axle.  This follows the driveline in approximate terms—unless the driveline is offset like with a side-drive transfer case.  This line of force, aimed forward and perpendicular to the rear axle, becomes the reference point for the front axle's position.  The front axle ends up parallel to the rear axle, which is simple to visualize on beam axle trucks like our Ram 3500 models.  The front axle must also align sideways or laterally, the reason for your adjustable track bar.
Whether the frame is perfectly square or not, if the front axle is parallel to the rear axle (plane view from the top), and if the axles center laterally with each other, you can align the truck's front end.  The frame should be square, though, because an out-of-square frame would place the springs, suspension arms and steering linkage at odd angles with the axles.
So, let's start with a square frame, no collision damage, and a rear axle that sets squarely in the truck.  It's much easier with our leaf sprung, beam rear axle:  The centering points for the rear axle are simply the leaf spring center bolts and the axle's spring perch holes—plus any spacer block alignment holes or pins.
Rear axle in place, you can use the string-in-diamond method for setting the beam front axle's position for both parallel to the rear axle and laterally on center.  I used the string method for two illustrated how-to articles at the magazine: my Jeep XJ Cherokee 6-inch long arm installation at the "Jeep XJ Cherokee & MJ Comanche 4WD Workshop" (see the left panel menu) and also the Jeep TJ Wrangler Rubicon Full-Traction Ultimate 4-inch lift.  The XJ Cherokee is similar to our Dodge Ram trucks with link-and-coil front suspension and leaf springs at the rear.  Both Jeep vehicles have beam axles front and rear.
Critical to a string-in-diamond beam axle alignment is finding precise reference points at each of the axles.  You must have a reference point at each side of the front axle that is truly equal distance from the axle's centerline.  The rear axle on our trucks is simple:  Use the leaf spring center bolts as the rear reference points.  On a Jeep TJ or JK Wrangler, there are matching suspension points that are equidistant from the rear axle's centerline.
The front axle should align with equal string lengths to the rear axle, measured in cross or "diamond".  This means measuring from the front axle's left side reference point to the right rear spring center bolt, then from the front axle's right side reference point to the rear axle left side spring center bolt.
This measurement must be very accurate.  Even 1/16"-1/8" variance can make a difference.  If there are obstacles under the chassis that prevent an accurate measurement, you may need to relocate your reference points or even make "extensions" from the reference points to below the obstacles...For these measurements, you can have the axles suspended to full drop, which may help the string lines clear the transfer case skid plate, the exhaust or any other objects in the way.
Be creative.  It's crucial that your four reference points reflect equal distances from the center of each beam axle outward to each axle's reference points.  Strings then measure in cross between the front and rear axle reference points.
Again, the end game here is to have the axles parallel and tracking in line with each other.  When the front axle is offset laterally, one way or the other, we call this "dog tracking".
Note: Don't be confused if one axle's track width is actually slightly wider than the other axle with the wheels in place.  Some trucks (G.M. beam axle 4x4s come to mind) were designed this way, typically with the front axle slightly wider than the rear.  I won't digress into "why" this was the design, simply know that if your reference points match side to side on each axle, and if you run the string lines in cross to matching points at the opposite axle, you will determine both the square and lateral alignment of the two axles.
Checking for square with two strings-in-cross is a simple function of geometry.  If anyone is having difficulty understanding the principle, draw a perfect square on a piece of paper; now draw an "X" from opposite corners, intersecting at the middle.  Measure the length of each "X" line.  It will be equal.  If you now use a rectangle instead of a square, the results will also be two equal length, intersecting lines.  Play with this, and then transfer the "X" lines to your truck's chassis:  On your long wheelbase Dodge Ram 3500 truck, the beam axles represent the short ends of a rectangle.
The most elaborate "4-wheel" alignment machine will not produce any more accurate results than doing a string line test properly.  Once you get the axles square, you can concentrate on a front wheel alignment.  This, as you say, is not rocket science, and it's even easier with a beam front axle.
Camber, in particular, is factory pre-set on a beam axle.  Camber measurement indicates the degree to which the axle beams, steering knuckles and ball joints are in alignment.  As you mention, you can make camber corrections with off-set ball joints, or eccentric ball-joint seats, and a source for such parts is Specialty Products Company.
Caution: I am against "bending" beam axles to correct slight camber issues unless a racing, weld-on truss is part of the straightening process.  (Be aware, too, that welding on a truss is a good way to warp an axle and alter camber!)  Consider the axle tube and center section materials plus the original stress that caused the axle to bend.  There are metallurgical changes that take place with cold or hot bending.  If you need to correct for a slightly bent or out-of-spec axle beam, use offset ball-joints or eccentric ball-joint seats.  Make sure the bend did not stress-fracture the axle pieces.  Toss out the axle housing if in doubt—you can transfer internal pieces and add-on goodies to a new housing.  (See the magazine's many axle rebuilding articles and the HD videos on axle setup.)
Be aware that beam front axles come from the factory with +/- camber often slightly beyond the factory recommended camber degree range.  I have seen this on Dana Jeep front axles, typically at the short beam side with more factory welding. An extra 1/8 to 1/4-degree camber at one side is not earthshattering and likely was acceptable during OEM axle assembly and installation.  This will not impair vehicle handling and has negligible effect on tire wear if you rotate your tires on time.  If you are adjusting caster and camber with offset ball-joints or eccentric ball-joint seats, bring both the caster and camber within their recommended degree ranges.
To answer your questions about "do-it-yourself" alignment, go no further than these three features that I've done at the magazine.  They each get brisk traffic, addressing alignment goals with inexpensive solutions for doing your own alignment work.
First is the ‘DIY’ feature on a beam front axle wheel alignment.  This is a useful article for understanding the principles of front wheel alignment as well as a 'how-to' on using an affordable SPC Off-Road Fastrax 91025 gauge kit designed for tires to 44" diameter.  Click here to see this DIY how-to and equipment article.


For those on a shoestring budget, a single gauge kit will do.  You can even improvise on the need for turn plates.  SPC suggests using plastic sheeting beneath the front tires for a slip surface.  On a beam axle, you can unload the weight slightly with the use of two floor jacks, raising the weighted axle evenly and just enough to take the heavy load off the front wheels and tires.  This provides easier wheel turning.


There is also a photo closer to home, my Dodge Ram 3500 4x4 alignment after installing the Mopar lift kit.  Here, I purchased inexpensive front turn plates ($100 for the pair!) from Gil Smith Racing at New York.  Gil is a personable family guy, and these plates do the job despite the massive front end weight of the Cummins engine, 9.25" beam axle and 500 pounds of Warn bumper with M12000 winch and stainless wire. 


For the Dodge Ram alignment, I added a second Fastrax 91025 alignment gauge kit from SPC to make toe setting easier and quicker.  This way, you can use the winged braces and separate gauges at each side of the truck during the alignment procedure.  This eliminates the need to swap a single gauge set from one side to the other. 


Last, but surely not least, is the HD video walk-through of alignment on a Jeep TJ Wrangler Rubicon.  You'll like this for both a visual orientation and added quips about the process.  In this HD video, I do use the double alignment gauge sets from SPC and the Gil Smith turn plates.  You’ll see how this speeds up the process.

Some additional pointers on doing your own alignment at this level:  1) make sure the floor is flat in both directions or compensate when taking the measurements with the bubble gauges, 2) make sure the turn plates are thin (like the Gil Smith type) or if you spring for more commercial type turn plates (available from several sources, do a Google search under "wheel alignment turn plates"), make sure you raise the rear of the truck to compensate for the turn plate height at the front.  Even with a 140.5" or longer wheelbase, a sloping or leaning truck will throw off your camber and caster readings with the SPC 91025 bubble gauges...If you want to add a touch of professionalism, purchase a pair of rear slip plates from Gil Smith Racing that will enhance the work and raise the truck's back end to match the front turn plates.


As you mention, always save the toe-in setting for last.  Camber and caster angle must be right, with the vehicle setting at static (curb) height on the ground, before setting toe.  I use factory toe-in and caster angle settings, and the Dodge Ram handles very well.  And, yes, caster is important, this and steering axis inclination (SAI) are what return the front wheels to center after coming out of a corner.
The surest sign of too little caster angle is a vehicle that requires turning the steering wheel back to center after a turn.  I'm at 4-degrees positive caster on the Dodge Ram 3500, closer to 7-degees positive on the XJ Cherokee.  More can sometimes be better for off-pavement turning radius; however, factory specs are the best for normal tire wear and handling in general.
I mentioned another specification that is of concern during alignment:  steering axis inclination (SAI).  We can go into this if you want, but the important thing to note for DIY alignment purposes is that strange caster and camber angle readings over the full turning arcs (illustrated in the XJ Cherokee alignment how-to article and shown in the TJ Wrangler HD video coverage) are an indication of a bent steering knuckle on a later beam axle 4x4 or a bent spindle on 2WD and vintage 4WD vehicles.
On alignment equipment that will identify SAI error, if all measurements are correct and SAI is off, we inspect the steering knuckle, spindle or unit bearing hub for damage.  Make sure any strange readings are not from bad steering knuckle ball joints or worn wheel/hub bearings!  Better yet, inspect for ball joint, wheel bearing and unit hub bearing wear before attempting the alignment.  Check steering linkage for loose joints, too.
This is ground school, we can go from here.  As a light- and medium-duty truck fleet mechanic in the late 'sixties, I began aligning my own beam axle Jeep CJ3A and vintage '55 Ford F100 at home.  On these vehicles, toe-in could be set with nothing more than a tape measure.  If you do wheel alignment with turn plates, the steering linkage and suspension will be unloaded, and the measurements will be that much more accurate.  Add rear wheel slip plates and Fastrax gauges, and you can emulate a "pro" alignment!
Even on the vintage 2WD and 4WD fleet trucks with beam axles, I did quick, rough-in beam axle wheel alignments with nothing more than a tape measure or a portable, adjustable "toe bar".  Floor jacks were placed evenly under the axle at each side.  I would lift the axle beam just enough to "unload" the wheels and tires.  Before setting toe, I made sure the wheel bearings and kingpin bushings or bearings were in good shape and adjusted properly.


Tape measure alignments on the trail are often necessary when someone bows a tie-rod on a tall rock or snaps a tie-rod in half.  A Ready Welder tie-rod repair at Moab's Rose Garden is just one place where your tape measure alignment skills would be popular.  This can get a vehicle home from the trail and tracking down the road safely to a wheel alignment shop.  When using just a tape measure for toe-set, make sure you follow the tread pattern closely at the front and rear midline of the tires.

When using turn plates to unload and center up the steering linkage and suspension, it helps to bounce the front end.  Push down on the front bumper a few times—the bumper is conveniently located at waist height on your Mega Cab!
If necessary, use a pair of floor jacks under the beam front axle to take weight off the wheels and tires, then lightly rock the steering wheel at its center position before setting the front tires and steering wheel to straight ahead.  This will unload the steering linkage for more accurate alignment settings.
When using a tape measure only (not the Fastrax 91025's wing arms), always measure matching tread points.  Measure as close to the midline (3 and 9 o'clock) of the tires as possible.   Avoiding obstacles is sometimes difficult, but midline of the tires is preferred.  Always set toe-in, followed by centering up the steering wheel.  You center the steering wheel by adjusting the steering linkage sleeves—never by removing the steering wheel and repositioning it!
Caution:  The steering wheel spokes are factory set to align with the center or “high” point of the steering gear in the straight ahead steering position. Bring the front wheels into alignment with the centered steering gear and steering wheel—not the other way around!  If the steering wheel has been repositioned from factory, find the precise center point of the steering gear.  Position the steering wheel there before aligning the front wheels to straight ahead.  This also applies when making fine steering wheel position changes after an alignment:  Adjust the steering linkage sleeves, do not reposition the steering wheel!  Always check toe-in again when you center the steering wheel.
To illustrate how well you can do a 4-wheel alignment with strings, a tape measure, a common spirit level and a protractor, I installed the Full-Traction Ultimate lift kit on the Jeep TJ Wrangler Rubicon in just that way!  The job began with the vehicle on my hoist and as level/parallel to the ground as possible.
I placed a pair of adjustable tripod stands beneath each axle and raised the vehicle straight up, just enough to install the lift kit.  The axles remained on the stands with cables and other chassis attachments still in place.
After installing the kit, including a bevy of adjustable link arms and a unique rear tri-mount suspension system, I used the string method to square the axles.  The rear axle location, fortunately, was fixed by the kit’s design, so this became the reference for making everything square with the frame.  The approach was similar to the rear leaf springs and center bolts on our Dodge Ram 3500 trucks.  In our case, the rear springs and axle spring perches locate the rear axle squarely at the frame.
I set the caster with a quality bubble level and a 180-degree, indexed protractor.  I set toe-in with vehicle weight on the axles and tripod stands, using a tape measure fore and aft (as close to 3 and 9 o'clock as practical) at the front tire midlines, keeping the tape as level and parallel to the floor as possible.  In my view, this was all just a preliminary, rough adjustment.
The next stop was a friend's shop with a $40K alignment rack capable of 4-wheel "thrust" alignment.  On the alignment rack, to everyone's surprise, the entire suspension system took only one-half turn of one threaded link arm tube to be fully square!  Caster was on, camber (non-adjustable on a solid beam axle) was okay, toe-in and centering of the steering wheel were just routine, slight adjustments. 
Caster angle was within spec and did, as you describe, provide an acceptable angle for the front/pinion U-joint flange.  With a double-Cardan (CV) joint at the transfer case, there is some leeway on this front axle pinion joint angle, and the compromise is between caster angle and U-joint angle.  Like you comment, caster usually wins if you want the vehicle to steer correctly!
For modified trucks with suspension lifts and oversized wheels and tires, there are two very important considerations for handling.  First, the aftermarket wheels' offset and the tire diameter must provide the right intersect point with the ground.  This is the “scrub radius”. 
Visualize the front wheels pointed straight ahead.  Draw a line through the ball-joint stud centerlines and observe where that line intersects the tire tread at the ground.  This point must be similar to the OEM wheel/tire intersection point, or you will swing the tire on an odd arc during turns, resulting in strange handling and premature tire wear.  Scrub radius impacts tire wear as well as handling.
Secondly, consider the arc of radius and caster angle changes as the front suspension (link arms in your case) rise and set.  Arc of radius is why we do long-arm kits for dramatic lift.  When we increase suspension travel, short arms exaggerate the caster angle changes as the suspension extends and compresses.
Long link arms are the solution for increased suspension travel.  Longer arms will create less caster angle change over the suspension and axle’s arc of travel—or radius.  Simply put, you can set the caster at static/curb weighted chassis height, and the caster angle does not vary excessively as the link arms move up and down with the axle.
When buying an aftermarket suspension lift kit or bigger/wider wheels and tires, consider these issues.  In looking at your Mega Cab components, I really like the stamina and quality of the aftermarket joints, link arms and drop brackets!  What you want at the end of the day is suspension that behaves as well as or better than OEM engineering—yet with the lift and tires you desire.  Going beyond “looks”, the goal is to understand the demands and dynamics of vehicle suspension and handling.  Doing your own wheel alignment is a good start.
As for the rear axle, the usual concern is pinion and driveline angles for U-joint survival.  Within reason, you can rotate the axle housing for pinion angle change without affecting vehicle handling, as the rear drive axle’s shafts are not sensitive to caster.  (If we were talking about a front wheel drive car or an IRS/AWD car, there would likely be provision for adjusting rear wheel caster, camber and even toe-set.)  For our trucks, tall lift blocks at the rear leaf springs can create some issues, mainly traction and spring windup related.
So, you might skip the visit to the local 4-wheel alignment shop and the brief Car and Driver  read—likely just long enough for the tech to discover that specifications for your lifted and modified '06 Dodge Ram 4x4 Mega Cab are nowhere to be found in the alignment machine's software program.  As an option, consider the SPC Off-Road 91025 alignment equipment...Two kits work even better than one!
Used properly, this accurate, portable SPC setup can help you dial your front end alignment for both safety and good tire life.  Bubble caster and camber gauges were an automotive industry standard for at least sixty years prior to light beam, infrared, RF and laser alignment equipment. 


I entered the service and repair industry when we were still called "mechanics", and breaker point ignitions were the norm.  Smaller shops used floating caster/camber bubble gauges that fit magnetically to the end of front wheel hubs!  Professionally, I've spun wrenches all the way into the contemporary electronic fuel-and-spark management "technician" era.  Electronic, beam four-wheel alignment equipment has been in vogue for more than three decades now...I find it advantageous to have walked in both worlds.
Beyond alignment, make sure that the wheel offset and tire diameter add up to a safe and tolerable "scrub radius”.  As an alternative to Car and Driver, sift through this Wiki info about scrub radius and SAI.  When you widen the wheel rims, you can only go inward so far.  (Rotors, calipers and hubs limit the inward wheel position.)  For that reason, wide rims almost always offset to the "negative" direction or outward.  If there are wheel backspacing choices, match up the wheel width, backspacing and tire diameter wisely!  The concern here is the scrub radius.
We lift our vehicles and mount oversize wheels and tires for a variety of reasons.  In the end, we get to make the handling and safety corrections that these modifications require.  Routine tire rotation is always essential, even more so when scrub radius and arc of radius get compromised.  Once you dial the front end alignment to the best point possible, watch for ball-joint wear, wheel bearing or hub bearing wear and any tire issues.  This can sometimes be the price for a lift and oversized tires.  We can, however, reduce, minimize or even eliminate that risk and expense!


  • Megatron and belvedere like this

#224 Driving Your Dodge Ram Cummins for Fuel Efficiency!

Posted by Moses Ludel on 28 June 2013 - 05:26 PM

Thanks for catching this post...It's among my favorite subjects, as you might have guessed...


Once the axle gearing is correct, the other factors that drop fuel mileage on your '06 Ram 3500 Cummins would be 1) the increased vehicle height (kiss off aerodynamics of any kind!) and 2) the vehicle's weight over stock.  I wound up in a similar situation with a 4" lift, 35" tires and a carload of "cool" accessories!  Not sure of your accessories, I added approximately 1,350 pounds to my over-the-road, "unloaded" weight...kind of like perpetually pulling a well equipped tent trailer! 

Ram for Web (16).jpg Ram for Web (5).jpg Ram for Web (8).jpg

Hey, we all like the "look" and utility of a lifted and accessorized Ram 3500 4x4! Here, the truck we purchased new in October 2004 is undergoing a metamorphosis in 2011, getting ready for show time at the BFGoodrich Tires booth, Off-Road Expo at Pomona, CA! Let's see now, the lift, wheels and 35" tires, we'll add a utility fuel tank that takes us to Moab, Utah and back from the Reno, Nevada area...and that M12000 Warn winch will be a dandy when needed! Oops, there went the 25 mpg. Time for a 4.56:1 axle gear change out!

(Can't see the photos? Join our free forums and get the full benefits of membership!)


Most have no idea how quickly the upgrades and accessory weight add up: Try oversized American Eagle wheels and BFG tires for at least 150# over stock including the spare; a Mopar lift kit after swapping out OEM parts for an added 50 pounds; a Warn M12000 winch for 140# (bare winch wound with wire rope); front and rear HD bumpers for an extra 300#; a Transfer Flow cross bed fuel tank with additional fuel on board: 75 gallons @ 7.1 lb/gallon for Low Sulphur diesel = 532.5 pounds when full plus the aluminized steel tank's weight!  Oh, and I do like the three Bestop Treksteps for 60 pounds plus.


I'll comment on your gearing projections, just did the math...If your tire's revolutions per mile are around 560 (Toyo rating for several popular 37" diameter tires, confirm your exact revs per mile), then here are your engine speeds at practical road speeds in overdrive (0.69:1):


4.88 gears @ 70 mph = 2200 engine rpm

4.88 gears @ 65 mph = 2043 engine rpm

4.88 gears @ 55 mph = 1728 engine rpm


4.56 gears @ 70 mph = 2056 engine rpm 

4.56 gears @ 65 mph = 1909 engine rpm

4.56 gears @ 55 mph = 1615 engine rpm


According to Cummins, you should use the 4.88:1 gears for a truck under 10000# GVWR and intended for 70 mph cruise.  In my experience, though, if fuel mileage were your sole aim without carrying cargo or trailer pulling, I would suggest the 4.56 gearing.  This would keep you "in the window" for maximum fuel economy.  However, even a light travel trailer would immediately tip the scale toward taxing the engine, which could impact both fuel efficiency and engine life—plus overload the transmission (clutch if manual) and driveline.


Actually, with your 37" tires, the 4.56:1 ratio would be much like your 3.73:1 gears with the Ram 3500's stock tire size.  (That was also before accessory add-ons and the lift, too!)  In overdrive, that off-the-showroom floor truck fell well below Cummins' recommended 2,150 rpm at 65 mph baseline for fuel efficiency and commercial hauling.  I'd again emphasize that 23-25 mpg highway was readily achievable with the stock tires, 3.73 gearing and no load at 65-69 mph (approximately 1800-1950 rpm).


If you pull a trailer very seldom and your add-on accessories weight is modest, fuel efficiency would be good between 55 and 70 mph with 4.56:1 gearing and 37" tires.  If the add-ons are like mine, however, your truck has a load before you stack on cargo!  The 4.56:1 gearing would not be low enough, you'd be better off with the 4.88:1 gears.


Note: This is why I opted for 4.56:1 with the 35" tires, rather than fiddle with 4.10:1, which would have been the direct correction for the bigger tires.  We plan to pull a trailer on occasion—without destroying the powertrain.  Also, as I've shared, between the lift height and added accessories weight, this is not the stock truck any more.


Your decision comes down to load and intended cruising speed.  Considering the height and weight of your Ram 3500 Mega Cab, you'd likely be "happier", performance wise, with 4.88 gears.  When you want fuel efficiency, hold the speed to 65 mph.  If that's too slow and you want to "cruise" at 70-plus mph yet get the best fuel efficiency for that rate of speed, consider 4.56:1 axle gearing.  You can see by the calculations that the engine would be in Cummins' recommended zone of 2100-2400 rpm when cruising at 72 mph (2114 engine rpm) with 4.56:1 gears in overdrive.  With 4.88:1 gears at 72 mph in overdrive, the engine would spin 2263 rpm and eat up fuel.


Cruise speeds above 65 mph will eat fuel, regardless...Moving as much mass as our trucks at speeds above 65 mph requires increasingly more fuel.  Base your choice on what cruise speed you find acceptable on the highway—the faster you go, the more fuel the engine will use...guaranteed!


The acceleration might be marginally better with 4.88:1 gears.  In terms of gear stamina with a given ring gear size (11.5" and 9.25" in our case), the 4.56 gears are actually stronger due to the larger pinion gear head size.  (This is slightly offset by the 4.88:1 additional gear reduction, which helps reduce load a bit.)  Given our Ram 3500 ring gear sizes, the stamina distinction is not as severe—nothing like sticking 4.88:1 gears in a Dana 35 Jeep rear axle with a 7.625" diameter ring gear!


We can kick this around more, Megatron.  Cummins recommends spinning the engine for "efficiency" and, at least commercially, does not want to "lug" the engine below 1900 rpm at highway cruising speeds.  Note that a truck under 10000# GVWR with an H.O. 5.9L Cummins ISB engine is less susceptible to lugging than a Cummins ISB engine in a medium-duty truck.


If you're running an aftermarket performance module or "chip", or have done any other tuning or engine modifications, we need to discuss those variables, too...That could change the rpm scale for maximum performance and fuel efficiency, in turn shifting the rpm band for the gearing.



  • Megatron and belizeancowboy like this

#1349 Harbor Freight 1000# Motorcycle Lift—Best Buy on the Planet?

Posted by elinamaria on 12 February 2014 - 02:37 AM

i bought a few products from garageworkshop.com.au -- it also provides best services :)  in australia ..

  • elinamaria and akansha0909 like this

#2457 Dodge Ram 3500 Cummins—What's the Best Way to Get Better Fuel Mileage?

Posted by Moses Ludel on 22 October 2014 - 02:45 PM

TaylynQuay...Welcome to the forums, we're very pleased to have you join the Dodge Ram/Cummins discussion.  There is a lengthy topic aimed right at your fuel mileage questions.  Please read through the popular (over 22,000 visits as of today!) exchange at our Dodge Ram Cummins forum:




If you have any questions or comments after reading through the posts and replies, just ask or post!  Looking forward to your participation.



  • TaylynQuay likes this

#2418 1993 Jeep Wrangler Sahara 4.0L Troubleshooting OBD Code 27

Posted by bmorris57 on 15 October 2014 - 12:07 PM

Moses - Thanks... the diagram certainly helps...


It makes the mind wonder when you see this critical lamp removed and fragments left in the socket. 


That said, I really enjoy the jeep and the challenges it provides...


I assume it's easiest to test for vacuum leaks with the engine running to here the leak or observe the impact as you manipulate the vacuum line?


I'll get an update soon...



  • bmorris57 likes this

#2303 Jeep YJ Wrangler AX5 Replacement Options

Posted by Moses Ludel on 27 September 2014 - 04:16 PM

The Jeep legacy...We're four generations now...It does grow on us!

  • BlueFlu likes this

#2300 Jeep YJ Wrangler AX5 Replacement Options

Posted by Moses Ludel on 26 September 2014 - 10:09 PM

Agreed, our sons and only son-in-law have a penchant for Jeep 4x4s, too!



  • BlueFlu likes this

#2299 1994 Jeep YJ Wrangler

Posted by Moses Ludel on 26 September 2014 - 10:07 PM

Nice, BluFlu!  On my son-in-law's YJ Wrangler, we got around the D35 axle shaft issues with Superior Axle & Gear rear axle shafts and an ARB 30-spline differential.  I set this up, and with 33" tires, the Jeep has been trouble-free since with lots of hardcore trailing.



  • BlueFlu likes this

#2219 Member Photo Gallery: Jeep CJ7 (1983)

Posted by NVjeep on 16 September 2014 - 03:51 PM

Name: Jeep CJ7 (1983)
Date Added: 17 September 2014 - 12:51 AM
Owner: NVjeep
Short Description: CJ with a 4" lift, 33" tires, setup off road ready with most of the bells and whistles. I have it equipped with a TJ hardtop, custom fitted with half doors from a YJ with soft uppers with sliding glass windows. It has a 4.2L straight 6 with carburetor.  Four speed transmission.  My jeep is the one on the left in the picture.


View Vehicle

  • BlueFlu likes this

#2216 1989 Jeep YJ Wrangler 2.5L With No Spark

Posted by Axl67 on 16 September 2014 - 12:07 PM

Hello, can anyone please help me figure out why my jeep has no spark. The first 2 weeks after i bought it I had no issues. Then one day I turn the key and it wouldn't start. It'll crank but no spark. I unplugged the sparkplug cable that goes from the distributor cap to the coil only to fibnd no spark. I changed the Ignition Module, along with the Coil but still no spark. The frustrating part about it, is that the jeep can go days without any issues. it'll start up and run prfectly fine. But on the days I needed the most...It won't start. I have the jeep towed home twice in the last 3 weeks. Once the tow truck driver leaves I'll turn the key and it starts right up.

  • Axl67 likes this

#2146 Member Photo Gallery: Jeep Wrangler (2002)

Posted by Marc W on 04 September 2014 - 08:51 AM

Name: Jeep Wrangler (2002)
Date Added: 04 September 2014 - 12:51 PM
Owner: Marc W
Short Description: My daily drver is finally starting to show signs of its age.
Mild modifications:
OME suspension with 33" tires
Advance Adapters SYE
JKS Front swaybar disconnects
JKS Front and rear adjustable track bars
Banks Catback
Mountain Offroad Motor mount lift
1.5" Body lift


View Vehicle
  • BlueFlu likes this

#2100 1994 XJ Won't Start When Hot

Posted by belvedere on 20 August 2014 - 06:50 PM

Have you verified that you have no spark during the no-start?  If so, I think the CPS is a good possibility.  Just be sure to install a quality one (Mopar or Echlin).  The cheap aftermarket replacements are notoriously unreliable.

  • hatterasman likes this

#2077 Changing 1985 Jeep CJ-7 from Manual to Power Brakes

Posted by Moses Ludel on 14 August 2014 - 08:09 PM

Welcome to the forums!  To answer your question on changing over brakes, I'd begin by saying the best practice is to line up a donor vehicle that is original, and use the layout and parts as a prototype.  Typically, you will change the master cylinder and booster assembly, the linkage at the brake pedal, the proportioning/combination valve and other pieces that may differ.  Compare brake lines and hoses, too.


I begin by studying the parts and part numbers in a factory parts manual, and here I can help.  Below is a PDF with not only part numbers from Mopar but also the layout schematics for your parts.  All pages are relevant, you're comparing individual parts and model/equipment applications.  Zoom into the images and text for finer details, an advantage with a PDF and bitmap images.


You can do some preliminary work by comparing the parts differences between the manual braking system and the power braking system.  From there, determine which parts must be used in the conversion:


Attached File  Jeep CJ Manual Versus Power Brake Parts.pdf   167.84KB   2 downloads


As a footnote, be aware of the brake bleeding procedure for these later CJs.  You need to follow the factory approach and shuttle the valve properly at the proportioning/combination valve.  Without doing so, you will not be able to bleed brakes effectively.


This is a place to start...Looking forward to your involvement at the forums!



  • gimp1 likes this

#1787 Old Family Friend "Comes Home"

Posted by Rocket Doctor on 17 May 2014 - 04:47 AM

This 1967 Ford F-100 4X4 was purchased by my folks in the fall of 1968. It was used, and Dad chose this one after test driving several used IHC's and Fords. Actually, his test drives ended up being over a long weekend, and involved venturing into the snow, mud and muck in the low mountains around our home in search of mule deer, and getting into and out of elk camp. He got along well with the dealers!


In any event, it came with a 352 cid V8, four speed manual, and Dana 20 transfer case, that was "in and out" with no low range. Along the way, it had a 351 "Modified" installed that was shortly removed, another 352 installed, and, after my oldest son drove it for a bit, he traded the 352 for a 390, and that's what's in there now, along with the remainder of the original drivetrain. Axles are true 'high pinion' Dana 44, and 9" Ford with 31 spline axles and open differentials at both ends. Manual steering, which, back in the days of bias ply tires, was easy enough to manipulate, but when Dad installed its first set of Goodyear radials, our arms started to make us resemble Popeye! It's even worse now, with all the wear and neglect that "Old Green" has seen.


Dad, of course, used it to haul a 16' camp trailer, hunting gear with a couple of Honda Trail 90's in the bed, I used it as a primary vehicle for four years in high school, where the headliner got at least a couple of sets of footprints....not saying anything more than that. My younger brothers each had a turn at trying to destroy this truck, one going sideways off a two lane road in the winter and taking out 50 feet of barbed wire and cedar fence posts with the driver's door, another brother who buried the thing in the sand and mud of a local diversion reservoir many times, and Dad, who dropped a tree across the hood while cutting firewood for the cabin.


I learned a lot of "back country" mechanic'n with that truck. We (my Grandfather and I) had a driveshaft u-joint bearing failure, and he showed me that I could use a couple of wraps of a hose clamp and a healthy gob of grease to close the gap after the roller bearings 'went away'. We nursed the thing 40 miles home on that repair! Found out that the truck was still driveable, at least to get back home from the boondocks when the carrier bearing failed, and we pulled the entire rear driveshaft assemblies out, and drove on the front axle. Not fast, not far, but it got us out and home!


This is one of those projects that will probably take a LOT of time. Mostly just to get through all the stories and memories that go with it. Dad passed away three years back, and it's been sitting in the pasture neglected for a lot of years. He was always going to "do something with it", but in the meantime, kept buying newer and newer vehicles that were more comfortable and easier to drive. Mom asked me to clean up the pasture, and I pulled it the 65 miles home to put it in my pasture.

Just another old Ford to a lot of guys, but Old Green is pretty special to Me!

Attached Thumbnails

  • 100_0907.JPG

  • chazzone likes this

#1389 Rebuilding a Jeep CJ-7 Dana 300 Transfer Case

Posted by Moses Ludel on 22 February 2014 - 01:38 PM

First, you do need a quality rebuild kit that has all the wear parts and smaller items, too.  Advance Adapters has that handled with this "Kit".  You'll like the price and the thorough approach, now that you're familiar with the Dana 300's needs:




This still does not include the gears or shafts, so that leaves those items.  Advance Adapters offers a 4:1 low range conversion, and I trust their gears, machining and hardening beyond any others I know.  This can be a spendy package but does provide all of the gears:




As for the intermediate shaft and any other parts, try Jon Compton at Border Parts, Spring Valley, California.  Jon has maintained a line on the Dana 300 parts for decades and is reliable:  Phone (619) 461-0171.  If you do a "stock rebuild", he can likely help with the parts, too.  Please share my regards with Jon...



  • rays84cj7 likes this

#1286 Rebuilding a Jeep CJ-7 Dana 300 Transfer Case

Posted by forman on 04 February 2014 - 07:55 PM

Hey I enjoyed the compressor story!
Today I was able to start disassembling the transfer case I followed your procedure and took some photos.
The impact driver worked great on the yoke nuts and to be honest most of what I disassembled today was very easily done. I have to admit once I learned the new to me transfer case nomenclature it went very well, I'm having fun.  


I noticed that the intermediate shaft had some wear, I could feel where the gears rode on the shaft. The gear teeth that I can see so far aren't showing any sign of wear I hope some of the photos will show.


In the first photo the bushing on the left looks rough on the outside.

Attached Thumbnails

  • intermediate gear.1.jpg
  • t case teardown_002.JPG
  • t case teardown_003.JPG
  • t case teardown_004.JPG
  • t case teardown_006.JPG
  • t case teardown_008.JPG
  • t case teardown_009.JPG
  • t case teardown_011.JPG
  • t case teardown_012.JPG

  • Rollbar likes this

#1190 Member Photo Gallery: Ford F-350 pickup (1995)

Posted by JohnF on 25 January 2014 - 02:29 PM

Name: Ford F-350 Pickup (1995)
Date Added: 25 January 2014 - 05:29 PM
Owner: JohnF
Short Description: I know, it's not a Jeep! This is my Ford, and I did a complete frame off restoration on the truck three years ago.


View Vehicle
  • Megatron likes this

#1123 Ranking Used Jeep XJ Cherokee Models by Year—Best to Worst

Posted by Rocket Doctor on 04 January 2014 - 10:59 PM

My first XJ was an 87 with the 4.0/Renix and the AW4.  The single biggest reliability issue I had with the rig was the cooling system bottle.  Got to the point where I carried TWO in the vehicle, with extra coolant, water, and tools to replace it, and there was more than one trip where I limped home on a leaking second bottle!  The only other real problem I had with it was that going uphill, especially at interstate speed, it would start running like it was a Briggs and Stratton instead of a six cylinder.  I found that the guts had busted loose inside the catalytic converter, and they would occasionally slide back and choke the exhaust off.  I won't swear that the converter got replaced, but the exhaust got 'fixed' and ran till the coolant bottle blew apart again.

  • belvedere likes this

#1115 4.0L Jeep Six: Cylinder #1 Misfire Trouble Code

Posted by Moses Ludel on 03 January 2014 - 08:10 AM

I'm pleased to see you jump into this, Belvedere, great suggestions!  Regarding weak valve springs, they can show up in a simple manifold vacuum check.  At any steady throttle setting, there will be an erratic, shaky vacuum needle movement with the vacuum gauge hooked up to an intake manifold vacuum source.  (Not to be confused with the wider swinging needle movement associated with a valve that is steadily leaking.)  As you share, Belvedere, weak valve springs can build up carbon, as the valves do not seat firmly when closed.

Valve Spring Seating Pressure Tester.jpg

Valve springs can actually be tested for valve seat pressure on the engine.  Above is a photo of a simple tester available for that purpose.  (Click here for a more upscale Moroso 62388 design available at JEGS.)  With the rocker arm(s) removed, head and valves still in place, this over-the-top spring pressure tester can indicate the actual seating pressure, which is a true test of each valve spring's function.  This is a sensible testing method with the least amount of teardown work: simply removing the valve cover and rotating the crankshaft to close the valve(s) to be tested.  (Caution: Disconnect the negative battery cable to prevent starter engagement when turning the crankshaft by hand.)


There are two off-the-engine tests for weak valve springs.  If Belvedere still has the original springs, measuring and comparing the free standing height of the springs can be one test.  Another method, commonly used by automotive machine shops and race engine builders, is actual spring compression testing (read in actual pounds force or as PSI) with a special gauge.  This measures pressure as the spring compresses. 


As for removing the valve springs, Belvedere's method works.  So does an air hold, and this is especially easy for #1 cylinder, since the timing mark for TDC on the crankshaft damper is a quick way to find TDC for #1 piston. 


Here's how I do an AMC-design Jeep 4.2L or 4.0L valve spring removal:


1) Disconnect the battery negative cable to disable the starter.  Remove the valve cover and spark plugs, at least #1 plug in this case, all of them to make rotating the crankshaft easier by hand.  Rotate the crankshaft by the damper bolt, turning the crankshaft in its normal direction of rotation.  Watch the valves open and close to be sure #1 piston is coming up on its compression stroke as you bring the damper pulley around to TDC on the compression stroke.


2) Set the damper mark at TDC to be sure the #1 piston is at the top.  This will prevent fears of "losing" a valve into the cylinder.


3) Use an air hold fitting in the #1 spark plug hole to keep the valves up in position.  These adapter/tools are commercially available and inexpensive, or you can make an air hold tool with an air coupler and an old spark plug.  (See my comments below.  Summit Racing lists the KD 901 adapters for $4.97, the best price I've seen anywhere!  For that price, no need to make your own.)


4) Remove the #1 cylinder intake and exhaust rocker arms.  The pedestal bolts simply get torqued back into place, there is no valve "adjustment" to be concerned about when you reassemble the rockers.  (Just align the arms carefully with the pushrod tips and valve stems when you reinstall the rocker arms.)


5) With a stream of air applying pressure from any reasonable size home shop or garage air compressor, you can remove the valve springs using the "over the top" method.  (80-90 PSI should be plenty, there will be some leak down, so your tank compressor should be full when you begin the spring change out.  You can recharge the compressor if necessary between each spring removal.)  Belvedere's approach with a pry tool attached to the rocker stud can be effective, and this tool is readily available.  KD has made an affordable rocker pedestal pry bar for many years.  Even if "universal" fit, however, make sure the tool is designed for the Jeep 4.0L engine application, or you will be fighting this task.


6) There is also an over-the-top valve spring compressor available, which can be easier to control for the less practiced mechanic.  (OTC's version is shown at the Summit Racing page link.  KD makes a tool like this, too.)  This is a two jaw compressor that can compress the spring between the valve spring retainer and the spring coils.  This tool is great—as long as there is enough installed spring height and adequate coil gaps for the jaws to fit.  You must be able to compress the spring enough to safely remove the valve keepers.  With either tool, stay centered on the valve spring retainer to prevent valve stem or keeper damage, and carefully remove the keepers like Belvedere cautions.  Belvedere's magnet suggestion works.


As a valve hold, Belvedere's traditional rope method certainly would work.  (I like that vintage Mopar logo, Belvedere!)  Make sure the piston is coming up on the compression stroke before inserting the rope.  Otherwise, rope could get caught between a valve head and seat, which would reduce exposed valve stem height (or chew up the rope under valve spring pressure).

Cylinder Leak Down Test-7.JPG

As for making an air hold tool, above is a photo of the hold I made in ten minutes for a tight-access Honda four-valve motorcycle engine.  The KD type adapter is so inexpensive that unless you need the tool this minute or have a unique situation (like the narrow access Honda four-valve thumper motorcycle engine, which will not accommodate the air hold adapter!), buy the KD or similar air adapters.  


Steps involved in making and using an air hold tool:


1) Remove the ground strap from the old spark plug shell.


2) Knock the porcelain and center electrode out of the plug shell.  Use eye protection, you're breaking porcelain/glass here.


3) If the shell size allows for tapping with a pipe tap, you can drill, cut and thread for an air coupler fitting's male threads. 


4) Use Teflon tape on threads of the air coupler fitting if you do use the threaded method.  I find brazing works very well and can be a much quicker way to attach the air coupler fitting—if you have an oxy-acetylene welding/brazing torch. 


5) Surface grind away any rough areas, like the remainder of the ground strap weld.  Wire brush your "new tool" as required.  You don't want loose material to blow into the engine's cylinder.


6) Thread your KD type or homemade tool into the spark plug hole. With the piston at TDC and the valves closed, hook your hose coupler to the air fitting and apply compressed air at the fitting and into the cylinder.


The air hold tool is a way to hold the valves in position and also run a crude cylinder leak down test.  (For details on a leak down test, see my HD video how-to at the magazine site.)  Though you cannot measure the percentage of leak with an air hold adapter, you can certainly find a badly leaking valve or leaky piston rings by the volume of air leaking out of the cylinder through the exhaust pipe, intake manifold/throttle body/carburetor or into the crankcase.  The leak down test is only reliable when performed with each piston at TDC on its compression stroke and both valves closed.


That the PCM would send a #1 Cylinder Misfire DTC, code P0301 in this case, due to weak valve springs is "interesting". The diagnostic tie-in here would be incomplete combustion, since fuel flow volume through the injectors is uniform (whether the valves seat properly or not), and the ignition spark reliability can be easily determined with an oscilloscope analysis.  Poor injector flow or weak spark can also create incomplete combustion and a misfire.


So, that means that the DTC reflects poor combustion at #1 cylinder, which could also be the result of inadequate valve sealing from the weak springs.  AMC-design engines do not have a history of weak valve springs, so weak valve springs should not be an epidemic or wide-ranging concern.  However, it would be a factor in some cases, and "weak valve springs" can result from valve seat recession/wear, overheated valve springs or over-revving the engine to the extreme and "floating the valves".  The 4.0L and 2.5L engines are known to run 250K miles without valve spring issues.


Belvedere, thanks for sharing.  This kind of information is very helpful to the forum members!  I'm very pleased that you take time to contribute at this level!



  • belvedere likes this